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Abstract—A novel adaptive identification method for stationary and moving objects is devel-
oped within the combined application of the classical statistical approach based on probabilistic
models and an unconventional approach oriented to the principles of continuity, multiplication,
and clustering for a set of arbitrary spatially distributed sensors. The problem is solved under
essential prior uncertainty associated, e.g., with the presence of weakly formalized abnormal
measurement errors, faults and complete failures of individual sensors, or significant changes in
the observation conditions of an identified object. Identification models, criterion, and algorithm
robust to such uncertainty are presented. As a comparative analysis example, a triangulation
system of sensors is used, and the effect achieved through adaptation is shown for this system.
Practical recommendations are given.
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1. INTRODUCTION

By now, many theoretical and practical advancements have been made for building various infor-
mation and measurement systems (IMSs) consisting of spatially distributed sensors (homogeneous,
inhomogeneous, stationary, and mobile), used for jointly identifying the state of stationary and
moving objects. Such systems are widespread in different fields: medicine, fault diagnosis, radio
astronomy, active and passive radar, electronic intelligence, field tests, security, etc.

Among the IMSs, there is an entire class of systems characterized by the following operating con-
ditions: multistage data processing, real-time mode, essential uncertainty, and high risks (damage)
from poor-quality assessments and decisions made on their basis. Uncertainty may be associated
with unreliable knowledge of the distribution laws of measurement errors, skips in observations,
the occurrence of equipment faults and complete failures, the presence of abnormal measurement
errors (AMEs), etc.; for example, see [1–5]. Concerning possible risks, by assumption, it is im-
portant to consider not only the possible average damage but also the losses from a poor-quality
solution in each particular case, i.e., when handling a fixed sample of measurements, particularly of
a small size. Such samples are encountered at the stages of secondary and tertiary data processing,
e.g., in active and passive radar systems (when forming the indirect measurements of bearings,
time delays, slant ranges, radial velocities, etc.). The quality of such measurements determines the
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efficiency of estimating the location and motion parameters of observed objects within the well-
known coordinate measurement methods (triangulation, difference ranging, triangulation difference
ranging, etc.).

Data processing algorithms under uncertainty are based on the classical probabilistic methods
of maximum posterior probability density or maximum likelihood, usually in an extended ver-
sion [1, 6–8]. In this version, all unknown uncertainty parameters are included in the expanded
state vector, but in practice, the expansion procedure sharply increases computational cost and
leads to the well-known effect of “smearing accuracy” and problems with the convergence and
stability of the estimates. The above difficulties of classical methods are even further aggravated:
within the multi-alternative approach [6], uncertainty is often eliminated by introducing a family of
different hypotheses, each to be either rejected or confirmed. Analysis shows that for uncertainty
conditions and strict requirements for IMSs, classical probabilistic methods are often of little use,
but they can be effectively used at the mathematical modeling stage to study the potential capa-
bilities of the IMSs being designed.

There exist other optimal and quasi-optimal estimation methods that can be used under un-
certainty. They include the extended least squares (XLS) method [7], the minimum method of
geometric and kinematic residuals [9], the method of invariants [10], various methods of linear
and nonlinear filtering (e.g., Kalman) [1, 6, 7, 11], different adaptive methods with parameter tun-
ing [12, 13], robust methods [6, 14, 15], randomized methods [16, 17], cluster methods [17, 18],
and neural network methods [19], as well as numerous heuristics used in special-purpose IMSs
(for example, see [20–25]). When imposing several constraints on observation conditions, these
methods allow overcoming uncertainty factors (e.g., AMEs). However, under essential uncertainty,
these methods encounter various unforeseen limitations and strict requirements for IMSs, which
significantly narrow the scope of their application.

This is often due to the difficulty of considering the geometric factor, which depends on the spa-
tial arrangement of the sensor family and the observed object. For example, triangulation-incorrect
observation domains arise for goniometric systems, which are typical even in the case of good mea-
surements. In addition, spatial estimation problems often involve pronounced nonlinearity, with
the use of unbounded (e.g., some trigonometric functions, necessary for describing the relationship
between the estimated and measured parameters), etc.

As a rule, the above methods guarantee convergence on average (either over an ensemble of
realizations or on a single sufficiently long realization), not ensuring a high-quality estimate based
on one small sample. In addition, the estimation procedures mainly use weight processing, in
which weights are calculated based on a large volume of prior information. Under the specified
uncertainty, such information may often be absent or turn out to be unreliable.

The general trend to build IMSs capable of withstanding different uncertainty factors is to in-
tegrate various estimation methods considering the limits of their applicability (including those
mentioned above). Each method of a selected family should be “accuracy-orthogonal,” in some
sense, to other methods of this family and realize its potential capabilities for definite observa-
tion conditions. A hybrid method implementing the principle of integration should combine the
advantages of both the classical statistical approach (ensuring optimality on average) and the
unconventional approach (ensuring optimality in partial), covering to the maximum extent the
specifics of an applied IMS and the uncertainty conditions.

For the unconventional approach, one can use the cluster-variant method [18], which has proven
to be an effective tool for eliminating prior uncertainty, both on average and in partial. It involves
the principle of multiplication of single estimates (considering a set of solution variations for the
same problem with different sets of measurements based on an initial input observation), the clus-
tering principle (dividing these estimates into several competing clusters), and an algorithm for
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constructing the resulting estimate based on these clusters. This method suffers from the following
drawbacks. First, only a triangulation system of goniometric (i.e., homogeneous) sensors is con-
sidered. Second, the identified object is supposed to be stationary (only its location is estimated).
Third, the resulting estimate neglects the different accuracies of single estimates within one cluster.
(This disagrees with the important principle of adaptability of the identification algorithm for a
wider range of observation conditions.)

Below, we develop a generalized cluster-variant identification method (GCVIM) to completely
remove all these disadvantages of the cluster-variant method [18]. The method should be based
on principles understandable to experts in the field of construction and application of this class
of IMSs in order to form guaranteed estimates (within the accepted constraints) of the location
and, moreover, motion parameters of identified objects under essential uncertainty. The weights
for measurement processing should take into account both prior and posterior information.

2. BASIC DEFINITIONS, MODELS, AND CONSTRAINTS.
PROBLEM STATEMENT

By analogy with [18], to omit cumbersome notation and considerations, the method proposed
is described mainly for the case of a single object. The method will be generalized to the case of
several objects in Section 5.

In the Cartesian frame XY Z, we consider a system consisting of a set of sensors Dm, m = 1,M ,
where the position of each sensor is given by a vector ρm = [ρxm, ρym, ρzm]T. An object is char-

acterized by the vector of estimated constant parameters λ =
[
λp, p = 1, P

]T
, and all measured

parameters are combined into the vector s =
[
sj , j = 1, J

]T
. For a moving object, the components

of the vector λ represent the unknown spectral coefficients at the corresponding basis functions of
a selected functional space. For a stationary object, λ includes the Cartesian coordinates of the
object. Depending on the type of sensors used, the components of the vector s can be, e.g., the
values of the following quantities: azimuth and elevation angle, slant range, radial velocity, as well
as the level (amplitude or power), phase difference, or time delays of the received signal (including
various derivatives of these quantities), related to different points in space and time instants.

The input observation is characterized by a vector

h = s+Δ+ ξ, (1)

where Δ =
[
Δj, j = 1, J

]T
is an unknown measurement error and ξ =

[
ξj, j = 1, J

]T
is measure-

ment noise with an unknown distribution law but zero mean and a given correlation matrix Kξ.

To describe the error Δ, we use the following approach. Let JΔ correspond to the real number
of those nonzero components of the vector Δ that are AMEs and lead to unreliable identification
results. Assume that JΔ � JΔ

max, where JΔ
max ∈ {0, 1, . . .}, and

Jh
min + JΔ

max � J, (2)

where Jh
min is the minimum number of components of the vector h sufficient for the high-quality

identification of the object, given no AMEs.

Below, various sets of measurements will be formed on the basis of h : hi =
[
hij , j = 1, Ji

]T
,

where hij ∈
{
hj , j = 1, J

}
, Ji � J , hi �= hr ∀i �= r, i, r = 1, I. For these sets, we introduce the

constraint

Jh
min � Ji � J. (3)
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With this descriptive approach to the errorΔ, some of its nonzero components can take arbitrary
values (including anomalous), they can be located in the vector Δ in the most arbitrary way, and
there is no universal and satisfactory model to describe them. The only way to formalize the
error Δ is to introduce some quantitative constraints (like (2) and (3)), which correspond to the
operation practice of a particular IMS.

The parameter vector λ is subject to the traditional constraints

λ ∈ Λ ⊂ RP , (4)

where Λ = {Λp
min � λp � Λp

max}, Λ
p
min ∈ R1, and Λp

max ∈ R1.

By assumption, we know an operator Ψ such that

Ψ : s → λ, (5)

i.e., λ = Ψ(s); in addition, there exists an inverse operator

Ψ−1 : λ → s (6)

for which s = Ψ−1(λ).

GCVIM involves three major principles: continuity, multiplication, and clustering. According
to the first principle, the quality of identification continuously depends on the parameters of the
input observation of a sufficient dimension. In particular, a sequential decrease in the parameter J
(by excluding certain components of the vector h) smoothly improves the accuracy of the resulting
estimate. The second principle states that it is possible to form a set of partial estimates (both
good and bad) and, due to conditions (2)–(4), the set of good estimates has sufficient cardinality.
By the third principle, under conditions (2)– (4), all possible partial estimates can be clustered, and
among the competing clusters there exists an optimal one, a basis for forming a reliable resulting
estimate.

According to the multiplication principle, we associate the main vector h with a family of partial

vectors
{
hi, i = 1, I

}
:

hi = si +Δi + ξi, (7)

where si =
[
sij, j = 1, Ji

]T
, Δi =

[
Δij, j = 1, Ji

]T
, and ξi =

[
ξij , j = 1, Ji

]T
.

The choice of I and J1, . . . , JI should agree with conditions (2) and (3); moreover, among{
hi, i = 1, I

}
there should exist vectors without AMEs.

Each vector hi can be assigned a certain operator Ψ∗ of classical optimal estimation (e.g., the
maximum likelihood operator):

Ψ∗ :
(
hi,Kξi

)
→ λ∗

i , (8)

where λ∗
i = Ψ∗(hi,Kξi) is a partial estimate characterized by the correlation matrix K∗

i of estima-
tion errors and Kξi is the correlation matrix of the noise ξi.

The elements of the matrix K∗
i are calculated using well-known formulas (for example,

see [1, 3, 4]); they are completely determined by the IMS type (triangulation, difference ranging,
angle-power, etc.), its geometry and observation conditions, as well as the matrix Kξi .

For each estimate λ∗
i , the vector of secondary measurements

(
s∗i =

[
s∗ij, j = 1, Ji

]T)
is estimated

using the known operatorΘ (which also depends on the type, geometry, and parameters of the IMS):

Θ : λ∗
i → s∗i , (9)

where s∗i = Θ (λ∗
i ).
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Note that generally, the dimension Ji of the vector s∗i does not coincide with that (J) of the
vector s. The vector s∗i is calculated by considering the Cartesian coordinates of only those IMS
sensors that are used to form the partial estimate vector hi.

Secondary measurements allow discarding bad partial estimates λ∗
i by checking the condition∣∣∣s∗ij − hij

∣∣∣ � εij ∀j = 1, Ji, (10)

where εij is the maximum value of the residual calculated considering the IMS type and the ma-
trix K∗

i .

If condition (10) fails or the estimate λ∗
i does not agree within the constraint (4), this par-

tial estimate will be eliminated. Let λ∗
[n], n = 1, N denote the partial estimates remaining after

elimination, where λ∗
[n] ∈ {λ∗

1, . . . ,λ
∗
I}. Obviously, the set of such estimates is non-empty under

conditions (2) and (3).

Definition 1. A scalar error Δij, representing one component of the vector Δi, is said to be
called abnormal if it violates condition (10). Otherwise, the error Δij is said to be normal.

Definition 2. Any group of scalar errors (two or more) representing components of the vector Δi

is said to be anomalous (even if each of these components is itself normal) if it violates condition (10).
Otherwise, the group is said to be normal.

Definition 3. The “clogging” coefficient of an original sample h is the value kh = 100(kΔ/J)[%],
where kΔ denotes the total number of abnormal scalar errors and scalar errors included in abnormal
groups.

The generated set X∗ = {λ∗
[1], . . . ,λ

∗
[N ]} is divided into competing clusters Kq, q = 1, Q. (Any of

the well-known clustering algorithms can be used, e.g., [18, 26, 27].) The estimates λ∗
[1], . . . ,λ

∗
[N ] are

sequentially (step by step) combined into groups: first the closest, and then those with increasing
distance to each other. At the first step, each estimate λ∗

[n] is treated as a separate cluster.

The clustering algorithm sets a mapping of the form Υ: X∗→{Kq, q=1,Q}, and the following
condition should hold:

X∗ =
Q⋃

q=1

Kq, (11)

where Kk ∩ Kr = ∅, k, r ∈ {1, . . . , Q}, k �= r, and Kq �= ∅ ∀q = 1, Q.

For each cluster, we will use the representation Kq =
{
λ∗
[q,n], n = 1, Nq

}
, where λ∗

[q,n] is a partial

estimate that falls into the cluster Kq and is assigned the number n. By analogy with (9), an estimate

of the vector of secondary full-dimensional measurements s∗[q,n] =
[
s∗j[q,n], j = 1, J

]T
is associated

with each λ∗
[q,n] :

s∗[q,n] = Θ
(
λ∗
[q,n]

)
. (12)

By full-dimensionality we mean that the dimensions of the vectors s and s∗[q,n] coincide.
The choice of the family of clusters {K1, . . . ,KQ} was discussed in detail in [18]; in particular,

a new adaptive clustering algorithm was proposed therein, including the case of unknown Q. This

algorithm divides the entire family
{
λ∗
[1], . . . ,λ

∗
[N ]

}
into clusters autonomously (without operator

intervention), is simple enough for computer implementation, and requires reasonable computa-
tional cost. According to the application results, this algorithm has high effectiveness and good
asymptotic properties.
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Based on (1)–(12), it is required to develop an adaptive GCVIM, in an optimal formulation, that

has robustness to the errorΔ and constructs the resulting estimate λ∗ =
[
λ∗
p, p = 1, P

]T
considering

the different accuracies of partial estimates included in competing clusters. The method should
include a justification of the objective function, criterion, and algorithm for selecting an optimal
cluster and constructing an optimal resulting estimate.

3. JUSTIFICATION AND CONSTRUCTION OF THE OBJECTIVE FUNCTION.
CRITERION AND IDENTIFICATION ALGORITHM

In the case where Δ = 0 and the only prior information available about the noise ξ is the cor-
relation matrix Kξ, preference is given to the traditional statistical method, which uses the weight
matrix Wξ = K−1

ξ . (This ensures optimization on average.) Within GCVIM, under essential un-
certainty, it is necessary to form a new objective function that would incorporate all the parameters
figuring in the constraints (2)–(4) and characterizing competing clusters. This function should in-
clude weights that, unlike any optimal statistical method, are calculated a posteriori based on one
fixed sample of measurements. (This ensures optimization in partial.)

To solve the identification problem, we use the following dimensionless normalized objective
function:

F (λ, q) = J−1
J∑

j=1

⎧⎨⎩
[
sj(λ)− hj

δj

]2
w(hj , q)

⎫⎬⎭ , 0 � F (λ, q) � 1, (13)

where sj(λ) is a known dependence of the measured parameter sj on λ; w(hj , q) is the posterior
weight of the measurement hj , 0 � w(hj , q) � 1; δj > 0 is a coefficient limiting the value |sj(λ)−hj |
for all viewed (model) values of λ ⊂ Λ and providing the corresponding normalization.

To find the weights, by analogy with (10), it is necessary to check the condition∣∣∣s∗j[q,n] − hj
∣∣∣ � εj[q,n] (14)

for the cluster Kq and any of partial estimates λ∗
[q,n] in this cluster.

The left-hand side in (14) characterizes the residual between the primary hj and secondary s∗j[q,n]
measurements for all possible values of j, q, and n. To consider the constraint on this residual, we
use the indicator function

ϕ(p) =

{
1− p, 0 � p � 1,

ϕ(p) = 0, p > 1.
(15)

With p =
(
s∗j[q,n] − hj

)2
/ε2j[q,n], the weights covering all the accepted constraints of the iden-

tification problem and the results of multiplying the partial estimates and their clustering, are
determined as

w(hj , q) = N−1
q

Nq∑
n=1

ϕ

⎛⎜⎝
(
s∗j[q,n] − hj

)2
ε2j[q,n]

⎞⎟⎠ , 0 � w(hj , q) � 1, (16)

where N−1
q acts as a normalizing factor.

Formula (16) takes into account the number Nq of partial estimates in each cluster Kq, the
thresholds εj[q,n] of admissible errors in secondary measurements, and the presence of gross mea-
surement errors (single and group) by introducing the indicator function ϕ(p). The coefficient
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w(hj , q) shows the specific contribution of the measurement hj to the formation of all marks of
the cluster Kq. It can be called the coefficient of matching between the measurement hj and the
elements of the cluster Kq. The higher value this coefficient takes, the more confidence there will
be in the corresponding primary measurement hj .

In view of (14)–(16), the desired objective function takes the form

F (λ, q) = (JNq)
−1

J∑
j=1

Nq∑
n=1

[
sj(λ)− hj

δj

]2
ϕ

⎛⎜⎝
(
s∗j[q,n] − hj

)2
ε2j[q,n]

⎞⎟⎠ . (17)

The optimal identification criterion becomes

λ∗ = argmin
λ

F (λ, q∗) , (18)

q∗ = argmax
q

w(h, q) = argmax
q

⎧⎨⎩J−1
J∑

j=1

w(hj , q)

⎫⎬⎭ , 0 � w(h, q) � 1, (19)

where w(h, q) is an integral dimensionless normalized weight.

Minimizing the decision function F (λ, q) with respect to the vector argument λ leads to the
equation [

∂F (λ, q)

∂λ

]T
= 0. (20)

By expanding the partial derivatives in (20), we obtain the system of scalar equations

J∑
j=1

{(
sj(λ)− hj

δj

)
w(hj , q)

∂sj(λ)

∂λp

}
= 0, p = 1, P , (21)

where partial derivatives are expanded given the known dependence s = Ψ−1(λ).

System (21) yields the partial estimates λ∗(q), q = 1, Q. As the resulting estimate λ∗ ∈{λ∗(1), . . . ,
λ∗(Q)}, we choose the partial estimate λ∗(q∗), q∗ ∈ {1, . . . , Q}, that satisfies, according to (19), the
following criterion for a fixed h :

w(h, q∗) > w(h, q) ∀q = 1, Q, q �= q∗. (22)

By choosing appropriate values of the parameters in conditions (2)–(4) and (10) and introduc-
ing appropriate ranges for the values of I, Q, and Kξ, one can always ensure a unique solution
of the identification problem with a required accuracy. With the correct planning of the mea-
surement experiment (for example, see [7]), the resulting cluster Kq∗ with the largest number of
partial estimates formed by the reliable observations hi is almost always detected. In turn, the
parameters εj[q,n] significantly affect the accuracy of identification.

The introduction of constraints (4) allows cutting the so-called incorrect identification domains,
in which the uniqueness condition of the solution may be violated. For example, consider a tri-
angulation IMS consisting of two direction finders; for such domains, the triangle formed by the
base and two lines of sight has a too small angle at its apex (the object is located in it). In these
cases, the lines of sight are almost parallel, and even minor bearing errors, not to mention AMEs,
can cause significant coordinate measurement errors. In addition, there may appear competing
clusters that are in the same direction, are separated by large distances, and have approximately
the same number of elements. Such incorrectness is tackled either by introducing constraints (4) or
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by using additional measurements from some external system that, together with the IMS under
consideration, eliminates incorrect domains. This also applies to optimal experimental planning
problems.

If we consider only one cluster, remove the accepted constraints, and let the weights w(h1, q), . . . ,
w(hJ , q) be the reciprocal values of the variances of the primary measurement errors (distributed
according to the Gaussian law), the solution (18)–(21) will correspond to the well-known maximum
likelihood estimate for the case of no AMEs.

In the classical statistical formulation, the identification problem is solved based on all measure-
ments (regardless of whether they are good or bad), which undergo joint optimal processing consid-
ering pre-assigned prior weights. The novel hybrid method also operates all measurements but takes
into account both prior information (in the form of the weight matrices Wξi = K−1

ξi
used to con-

struct partial estimates) and posterior information (in the form of the weights w(h1, q), . . . , w(hJ , q)
and w(h, q)), which is required to find the optimal cluster and construct the resulting estimate.

The algorithm for solving the identification problem in the cluster optimal formulation includes
the following steps:

1) The partial estimates are divided into clusters Kq, q = 1, Q (see clustering recommendations
in [18]).

2) For each cluster Kq, the number of marks (Nq) in it, as well as the partial w(h1, q), . . . , w(hJ , q)
and integral w(h, q) weights, are calculated.

3) The number q∗ of the optimal cluster Kq∗ is found using the criterion (19).

4) For the cluster Kq∗ , the system of equations (21) is solved, with the initial condition in the
form of a partial estimate taken as the center of this cluster. Finally, in view of (21), we obtain the

resulting estimate λ∗ = λ∗(q∗) =
[
λp(q

∗), p = 1, P
]T

of the parameter vector λ∗ of the identified

object.

Remark 1. Based on the linear approximation of the residuals sj(λ)− hj , the well-known ap-
proximate approach to constructing the maximum likelihood estimate yields the corresponding
system of linear algebraic equations instead of (21).

The implementation of the proposed algorithm (with the preparation of initial data) requires
the computational cost Γ = Γ1 + Γ2 + Γ3, where Γ1 is the cost of constructing a family of partial
estimates, Γ2 is the cost of clustering these estimates and selecting the resulting cluster, and Γ3 is
the cost of obtaining the resulting estimate. The implementation of these operations in special
computing environments causes no particular difficulties and can be done in real time.

Formulas (13)–(22) form the mathematical basis of GCVIM.

4. APPLICATION OF THE NOVEL METHOD TO A TRIANGULATION IMS

Consider a triangulation IMS with two-channel direction finders used as sensors (Dm,m = 1,M ),
to measure the azimuth αm and elevation angle βm of a stationary emitting object. In this case, we

have P = 3, λ = [λ1, λ2, λ3]
T = [x, y, z]T, J = 2M , s =

[
αm, βm,m = 1,M

]T
, h =

[
hj , j = 1, J

]T
=[

hαm, hβm,m = 1,M
]T

, and δj = π.

As s = Psi−1(λ) the well-known formulas are applied:⎧⎪⎪⎨⎪⎪⎩
αm(λ) = arccos

{
(x− xm)

[
(x− xm)2 + (y − ym)2

]−1/2
}
,

βm(λ) = arcsin

{
(z − zm)

[
(x− xm)2 + (y − ym)2 + (z − zm)2

]−1/2
}
.

(23)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 7 2025



A HYBRID METHOD FOR INTEGRATING SEPARATED SENSORS 607

The system of equations (21) is formed based on (23).

Condition (14) turns into ⎧⎪⎨⎪⎩
∣∣∣α∗

m[q,n] − hαm

∣∣∣ � εαm[q,n],∣∣∣β∗
m[q,n] − hβm

∣∣∣ � εβm[q,n],
(24)

and the objective function becomes

F (λ, q) =
M∑

m=1

⎡⎣(αm(λ)−hαm
π

)2

w(hαm, q)+

(
βm(λ)−hβm

π

)2
w
(
hβm, q

)⎤⎦ , (25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w (hαm, q) = N−1
q

Nq∑
n=1

ϕ

⎛⎜⎝
(
α∗
m[q,n] − hαm

)2
(
εαm[q,n]

)2
⎞⎟⎠ ,

w
(
hβm, q

)
= N−1

q

Nq∑
n=1

ϕ

⎛⎜⎝
(
β∗
m[q,n] − hβm

)2
(
εβm[q,n]

)2
⎞⎟⎠ .

(26)

The integral weight is calculated as follows:

w(h, q) = M−1
M∑

m=1

[
w(hαm, q) + w(hβm, q)

]
. (27)

As an example, we take the planar problem by letting ρzm = 0 and λ3 = z = 0, i.e.,
βm = 0 ∀m = 1,M . Assume that the matrix of primary azimuthal errors is diagonal: Kξ =
diag[σ2

α1, . . . , σ
2
αM ]. In this case, using the known operator Ψ∗, we can form a family of partial

estimates λ∗
i = [x∗i , y

∗
i ]

T, where{
x∗i = (BiEi − CiDi)(AiCi −B2

i )
−1,

y∗i = (BiDi −AiEi)(AiCi −B2
i )

−1.

Here, Ai =
∑Mi

m=1 cos
2 αmi/γmi, Bi = 2−1∑Mi

m=1 sin 2αmi/γmi, Ci =
∑Mi

m=1 sin
2 αmi/γmi,

Di =
∑Mi

m=1ϕmi/γmi, Ei =
∑Mi

m=1μmi/γmi, γmi = R̃2
miσ

2
αmi, ϕmi = ρxmi cos

2 αmi − 2−1ρymi sin 2αmi,
μmi = 2−1ρxmi sin 2αmi − ρymi sin

2 αmi, and R̃mi is the approximate range from the object to the
sensor Dmi, m ∈ {1, . . . ,Mi}.

For the triangulation IMS, we construct estimation error ellipses and, in view of the partial esti-
mates and the geometry of the triangulation IMS, use these ellipses to calculate the constants εαm[q,n]
for each cluster and partial estimates in it.

Formulas (25)–(27) form the basis of the one-stage GCVIM for the triangulation IMS. Unlike the
well-known cluster-variant triangulation estimation method [18], when forming posterior weights,
the novel method considers the fact that the right-hand sides of inequalities (24) depend both on
the competing cluster number q and on the partial estimate number n in this cluster.

It is also possible to use the two-stage GCVIM for the triangulation IMS in two versions. The first
version is based on the possibility to initially implement the two-stage GCVIM only on azimuthal
channels (the first stage) to form a family of planar partial estimates and clusters and then determine
the estimates x∗ and y∗ of the two Cartesian coordinates of the object (x and y, respectively).
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A particular line of the object’s position corresponds to the point (x∗, y∗) in the three-dimensional
space. Combining this line and all possible position cones corresponding to the elevation angles,
one constructs the missing estimate z∗ of the spatial coordinate z (the second stage).

The second version is to find, in relation only to azimuth channels, unreliable azimuth chan-
nels using the matching coefficients w (hαm, q) . The measurements of such channels are excluded
from further processing. Then, on the remaining (priority) azimuth channels and all elevation
channels, GCVIM is implemented in full. In this case, the number of partial estimates analyzed
increases (compared to the first version), which improves the quality of triangulation estimation
under uncertainty.

Obviously, the two-stage GCVIM for the two versions above does not exhaust the potential
capabilities of the optimal GCVIM under uncertainty but is less costly from a computational
viewpoint. This is primarily due to a significant reduction in the number of partial triangulation
estimates and competing clusters.

5. GENERALIZATION OF THE METHOD TO THE CASE OF MANY OBJECTS

The extension of GCVIM to this case depends on the purpose, design principles, and organi-
zation of the computing process in a particular IMS. We mention two basic versions of GCVIM
implementation in the case of many objects.

Version 1. A separate stage is to divide measurements into classes based on their belonging to
a given object (the measurement identification problem). Such a truncated problem formulation
is quite common in practice under the corresponding decomposition of the computational process.
In this case, GCVIM is applied to each class identified. For this, it is necessary to form the

measurement vectors h(l) =
[
h(l)j , j = 1, J(l)

]T
, where l ∈ 1, L denotes the object (class) number.

For the lth class, by analogy with Section 3, the elements K(l)q, M(l)q, w(l)(hj , q), w(l)(h, q), and q∗(l)
are formed, and then the resulting estimates λ∗

(l) =
[
λ∗
(l)j , j = 1, J

]T
, l = 1, L, are constructed on

their basis. Version 1, the most efficient from a computational viewpoint, allows organizing L
parallel processing channels for measurements, but it does not exhaust the potential joint processing
capabilities for available measurements.

Note 1. If incorrect decisions are made when solving the identification problem, then the false
measurements falling into a wrong class can be treated as measurements with gross errors. GCVIM
allows one to effectively struggle with such errors regardless of their nature.

Note 2. It is possible to solve the identification problem by engaging ancillary measurements,
which often “load” basic measurements. (For example, in radar and electronic intelligence, these
may include the carrier frequency, pulse repetition period, pulse duration, the type of intra-pulse
modulation, etc.) The joint use of basic and ancillary measurements is often necessary for deeper
identification of objects.

Version 2. In this case, GCVIM is applied to all measurements at once, forming clusters Kq,
q = 1, Q. Initially, it is necessary to determine the numbers q∗(l) ∈ {1, 2, . . . , Q} of priority (optimal)

clusters Kq∗
(l)
, which is achieved by introducing the criterion w(l)

(
h, q∗(l)

)
� γ, where γ is a given

threshold for object recognition, γ > 0. Next, for all these clusters, the resulting estimates are

constructed: λ∗
(l) =

[
λ∗
(l)j , j = 1, J

]T
, l = 1, L.

Version 2 is quite costly from a computational viewpoint, as it yields a large number Q of
clusters. The advantage of this version is that the identification problem for the case of many
objects realizes the potential capabilities of GCVIM under uncertainty.
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6. COMPARATIVE ANALYSIS

Consider a triangulation IMS in which the sensors Dm are located on a circle: ρm =
[ρxm, ρym, ρzm]T, ρxm = 104 cos[2π(m − 1)/M ], ρym = 104 sin[2π(m− 1)/M ], ρzm = 0, and M = 5,
m = 1, 5. For a stationary object, we investigated the set of its possible positions, with each po-
sition described by an individual vector of the form λk = [xk, yk, zk]

T, xk = 5× 104 cos(2πk/K),
yk = 5× 104 sin(2πk/K), zk =3×103, k = 1,K , where K = 180. From this point onwards, the
coordinates of the object and sensors are specified in meters whereas the azimuth, elevation an-
gle, and bearing errors in radians. For each k, it was assumed that the measurement noises of
different equally accurate sensors are independent and obey the Gaussian distribution with zero
mean, and the correlation matrix of the sensor Dm has the diagonal form Km = diag[σ2

α, σ
2
β ], where

σα = π/360 and σβ/360. Errors were formed by a random number generator. The numbers of un-
reliable channels (no more than half of all azimuth channels and no more than half of all elevation
channels) containing AMEs were selected randomly. In the channels, the resulting measurement
error was formed as the sum of the AME and the admissible random error, with the possible ranges
(3σα, π/6) for the azimuth channel and (3σβ , π/6) for the elevation channel.

For comparative analysis, four algorithms corresponding to the well-known cluster-variant
method (CVM, see [28]) and GCVIM (the novel method) were considered: A1 is the CVM al-
gorithm with a predetermined number Q of clusters; A2 and A3 are the one- and two-stage CVM
algorithms, respectively, with an optimally chosen number Q of clusters for a given initial condi-
tion Q0; A4 is the GCVIM algorithm. The algorithms were compared in terms of accuracy and
computational efficiency.

The estimation procedure was carried out for each k with subsequent averaging over 100 exper-
iments. In Algorithm A1, Q = 7; in Algorithms A2 and A3, Q0 = 2 was set as the initial condition.
Two numerical characteristics were used to compare the algorithms: S(Ai), the integral accuracy
characteristic expressed in meters, and T (Ai), the computational efficiency characteristic expressed
in seconds.

For the integral accuracy characteristic, we have

S(Ai) =
180∑
k=1

Sk(Ai) =
2π

180

180∑
k=1

τk(Ai),

where τk(Ai) =
∥∥∥λ∗

k(Ai)− λk

∥∥∥
2
is the partial residual corresponding to the kth position of the

object,

λ
∗
k(Ai) =

100∑
p=1

λ∗
kp(Ai)/100

is the average estimate of the vector λk (over 100 experiments), and λ∗
kp(Ai) is the partial estimate

for the kth position of the object in the pth experiment.

Algorithms Ai were compared in terms of the relative integral accuracy characteristic

δS(Ai) = 100S(Ai)S
−1(A1)[%]

and the relative computational efficiency

δT (Ai) = 100T (Ai)T
−1(A4)[%],

as A1 is less accurate and A4 requires more time compared to the other algorithms. The simulation
results are presented in the table below.

Table

Algorithms (Ai) A1 A2 A3 A4

δS(Ai), % 100 50 67 39

δT (Ai), % 81 92 14 100
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Clearly, in the abnormal operation conditions of the triangulation IMS, the modified algo-
rithm A4, which considers the posterior change in weights depending on the object’s position,
the competing cluster number, and the position of each partial estimate in this cluster, is signifi-
cantly better (in terms of accuracy) than the alternative algorithms. According to the simulation
results, by analogy with [18], under the above abnormal observation conditions, the maximum like-
lihood method is not applicable in either a simple or extended version. For instance, the error of
coordinate measurement based on the IMS under consideration reaches 100% in several directions.

7. CONCLUSIONS

The GCVIM proposed in this paper allows extending the idea of cluster-variant estimation from
the simplest problem of determining the location of a stationary object in a triangulation IMS
to a more complex one of identifying the parameter vector of a moving object in an arbitrary-
type IMS with homogeneous and even heterogeneous measurements related to arbitrary points in
space and time. The method produces a resulting estimate of the parameter vector that is robust
to the effect of gross measurement errors (e.g., abnormal single and group ones) under essential
prior uncertainty. GCVIM, both independently and in combination with traditional statistical
approaches, can be effectively used to improve the existing and develop promising IMSs. In the
case of limited computing resources and/or a large number of sensors and a high dimension of the
observation vector, the two-stage version of GCVIM implementation can significantly increase the
efficiency of identification.

Modern progress in the field of parallel computing (especially based on new operation princi-
ples [29, 30]) gives hope that the principle of multiplying partial estimates and their clustering
in the optimal variant will not become an obstacle to the practical implementation of GCVIM in
promising real-time IMSs. However, such an approach is feasible not for all existing IMSs: on large
samples, it may require too many parallel data processing channels and significant computational
cost.
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